JOM 23245PC

Preliminary Communication

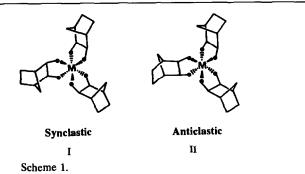
Rigidity of the unsymmetric coordination geometry of the two dithiolates in $(C_5Me_5)Ta(norbornane-exo-2,3-dithiolate)_2$

K. Tatsumi

Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560 (Japan)

Y. Inoue and A. Nakamura

Department of Macromolecular Science, Faculty of Science, Osaka University, Toyonaka, Osaka 560 (Japan)


(Received August 24, 1992; in revised form October 3, 1992)

Abstract

We have synthesized $(C_5Me_5)Ta(norbornane-exo-2,3-dithiolate)_2$ and found that the two dithiolate ligands coordinate to Ta with opposite orientations with respect to Cp^{*}. In the ¹H NMR time scale, this unique geometry is rigid up to 100°C.

In the course of our study on the homoleptic dithiolate complexes of Group 5 metals [1-3], we found that [A][M(ndt)₃] (A = Et₄N⁺, (ⁿBu)₄N⁺, Ph₄P⁺; M = Nb, Ta; ndt = norbornane-exo-2,3-dithiolate) had two unusual geometrical isomers, synclastic I and anticlastic II (Scheme 1), and they underwent facile interconversion in solution [4]. The kinetic data for the isomerization suggested polytopal rearrangement pathways without M-S bond rupture. In order to gain further insight into the behavior of such a dithiolate ligand at the Group 5 metal center, we synthesized a closely related bis-ndt complex, Cp^{*}Ta(ndt)₂ (Cp^{*} = C₅Me₅) (1), which is the focus of this paper. Also, this is an outgrowth of our continuing interests in half-sandwich complexes of tantalum having S-donor ligands [5-7].

When a solution of Cp*TaCl₄ in THF was added dropwise to a solution of 2 equiv. of Li₂(ndt) in THF, a dark brown color developed immediately. Evaporation of the solvent, extraction of the solid with hexane, and recrystallization from hexane/THF afforded 1 as deep green microcrystals in 41% yield [8*]. The complex 1 is air/moisture sensitive, but thermally stable up to *ca*. 180°C in the solid state. In the ¹H NMR (400 MHz, C₆D₆) spectra, illustrated in Fig. 1, there appear two

sets of peaks arising from the ndt protons, which were fully assigned based on a series of decoupling procedures and the NOE measurements (Cp^{*} protons *vs*. H1). Their chemical shifts are compared with those of [Ph₄P][Ta(ndt)₃] [4] and H₂ndt in Table 1.

Non-equivalence of the two ndt ligands in 1 is consistent with the structure III in Scheme 2 (top) in which the methylene bridge of ndt-A points away from the Cp^{*} ring and that of ndt-B adopts the opposite orientation. Interestingly, the H1 doublet moves to downfield relative to the corresponding H_2 ndt signal, significantly so for ndt-B. On the other hand, a large downfield shift of the H5 resonance was observed for ndt-A. The ring-current effects of Cp^{*} must be responsible for these phenomena.

The interesting geometry of 1 may be relevant to the unsymmetrical folding of two ethylene-cis-1,2-dithiolate (edt) ligands observed for Cp*Ta(edt), (2) [5], *i.e.*, structure IV shown in Scheme 2 (bottom). This coordination mode was rationalized in terms of the maximum bonding interactions between C=C π orbitals of edt and the two low-lying vacant d orbitals of Ta. The two identical conformers, IV and IV', are in equilibrium $(\Delta G_{50^{\circ}C} = 14.9 \text{ kcal mol}^{-1})$ in solution, probably *via* an inversion process of the TaS_2C_2 chelate rings. Such a process does not equilibrate the two ndt ligands in 1, because the non-equivalence originates from the unsymmetric nature of ndt itself imposed on the direction perpendicular to the TaS₂ plane. Having a sizeable Cp^{*} ligand, complex 1 is also unlikely to undergo polytopal rearrangements because of steric reasons. In

Correspondence to: Professor K. Tatsumi or Professor A. Nakamura.

^{*} Reference number with asterisk indicates a note in the list of references.

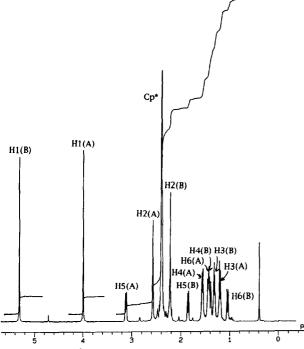
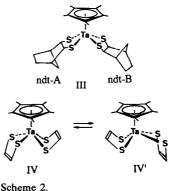
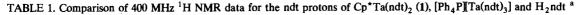
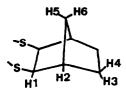



Fig. 1. 400 MHz ¹H NMR spectrum (ppm/ δ) of Cp^{*}Ta(ndt)₂ (1) in C₆D₆. Note that multiplicity of each resonance is masked in the small-scale chart, and the details along with the numbering scheme are given in Table 1.

fact, the spectral pattern of Fig. 1 remains unchanged up to 100°C in toluene- d_8 .

If the ndt ligands in 1 would be fluxional, then a possible pathway could be the one involving Ta-S bond rupture, which should be a high energy process according to the temperature independence of the ¹H NMR up to 100°C. Suppose that the H3 signals coalesce at 100°C [9*], then the calculated barrier to the




pathway could be 19 kcal mol^{-1} . Since we did not observe even a sign of broadening of these peaks, the activation energy must be much higher. The rigidity of the ndt coordination in 1 provides a firmer footing for the non-bond-rupture mechanisms proposed for the facile $I \rightleftharpoons II$ rearrangement of $[A][M(ndt)_3]$ (M = Nb, Ta) ($\Delta G_{30^{\circ}C} = 12.6 - 13.7 \text{ kcal mol}^{-1}$) and for the IV \rightleftharpoons IV' equilibration of 2.

It should be noted here that the EI fragmentation of 1 consists of signals derived from $Cp^{*}Ta(S_{2})(ndt)^{+}$ and $Cp^{*}Ta(S_{2})_{2^{+}}$ in addition to the parent ion isotopic cluster. This is analogous to the stepwise liberation of ethylene portions in the EI fragmentation pattern of 2, suggesting that C-S bonds of the alkanedithiolates are cleaved cleanly in the EI mass condition.

References and notes

- 1 K. Tatsumi, Y. Sekiguchi, A. Nakamura, R. E. Cramer and J. J. Rupp, Angew. Chem., Int. Ed. Engl., 25 (1986) 86.
- 2 K. Tatsumi, I. Matsubara, Y. Sekiguchi, A. Nakamura and C. Mealli, Inorg. Chem., 28 (1989) 773.

¹ H NMR	Chemical shift, ppm						Coupling constant, Hz		
	H1	H2	Н3	H4	H5	H6	J(H1H6)	J(H3H5)	J(H5H6)
1 (ndt-A) b	3.99(d)	2.59(dt)	1.13(m)	1.47(m)	3.16(dt)	1.38(dt)	1.71	2.08	9.64
1 (ndt-B) ^b	5.36(d)	2.39(dt)	1.23(m)	1.34(m)	1.88(dt)	1.00(dt)	1.95	2.08	9.64
$[Ph_4P][Ta(ndt)_3]^{c}$	4.03(s, br)	2.09(m)	1.06(m)	1.37(m)	2.46(s, br)	0.92(d, br)	(2) ^e	(2) ^e	9.5
H_2 ndt ^d	3.24(m)		1.29(m)			1.18(dt)	1.5	1.8	10.4

^a Ppm downfield from TMS, room temperature. ^b In C₆D₆. ^c In CD₂Cl₂. ^d in CDCl₃. ^e Estimated from the 100 MHz ¹H NMR in CD₃CN.

- 3 For other homoleptic dithiolate complexes of Ta and Nb, see: (a) M. J. Bennett, M. Cowie, J. L. Martin and J. Takats, J. Am. Chem. Soc., 95 (1973) 7504; (b) M. Cowie and M. J. Bennett, Inorg. Chem., 15 (1976) 1584, 1589, and 1595.
- 4 K. Tatsumi, I. Matsubara, Y. Inoue, A. Nakamura, K. Miki and N. Kasai, J. Am. Chem. Soc., 111 (1989) 7766.
- 5 K. Tatsumi, J. Takeda, Y. Sekiguchi, M. Kohsaka and A. Nakamura, Angew. Chem., Int. Ed. Engl., 24 (1985) 332.
- 6 K. Tatsumi, Y. Inoue, A. Nakamura, R. E. Cramer, W. Van-Doorne and J. W. Gilje, J. Am. Chem. Soc., 111 (1989) 782.
- 7 K. Tatsumi, Y. Inoue, H. Kawaguchi, A. Nakamura, R. E. Cramer,

W. VanDoorne, G. J. Taogoshi and R. N. Richmann, Organometallics, in press.

- 8 Cp*Ta(ndt)₂, deep green microcrystals, m.p. 200–202°C (dec.). UV/VIS ($\lambda_{max}(\epsilon)$, THF, nm) 271(2700), 323(2200), 384(1900), 600 br (400). far-IR (Nujol mull, cm⁻¹): 399 s, 386 s, 371 m, 360 s, 348 m, 334 m. MS (EI, 70 eV, *m/e*) 632 (Cp*Ta(ndt)₂+), 538 (Cp*Ta(S₂)(ndt)⁺), 444 (Cp*Ta(S₂)₂+). Anal. Found: C, 45.28, H, 5.60; S, 20.10; Ta, 28.93. C₂₄H₃₅S₄Ta calcd.: C, 45.56; H, 5.58; S, 20.27; Ta, 28.60%.
- 9 The difference in ¹H chemical shifts between ndt-A and ndt-B is smallest for H3.